EDB ,
Postgres for the Al Generation

From Distance to Intelligence:
Your Vector Search

Bilge Ince & Boriss Mejias

Bilge INCE
MLE @ EDB
Muay Thai, Running ¢

@abilgegunduz

€ (@bilge.bsky.social

(- OEDB

Boriss Mejias

Solutions architect @ EDB
Organizer of PGDay Lowlands
Air guitar \m/

(@tchorix@mastodon.world

@tchorix.bsky.social

EEEEEEEEEEEEEEEEEEEEEEEEEEE

https://mastodon.world/@tchorix

c OEDB

Time to Rock

Find 17 rock music outfits

EEEEEEEEEEEEEEEEEEEEEEEEEEE

(OEDB

Time to Rock

Find 17 rock music outfits for women

EEEEEEEEEEEEEEEEEEEEEEEEEEE

(DEDB

Time to Rock

Find 17 rock music outfits for women

EEEEEEEEEEEEEEEEEEEEEEEEEEE

(OEDB

Time to Rock

Find 17 rock music outfits for women

EEEEEEEEEEEEEEEEEEEEEEEEEEE

(DEDB

Time to Rock

Find 11 rock music outfits for women

EEEEEEEEEEEEEEEEEEEEEEEEEEE

LLMs

Text Input

y:
Language Model
\
v
0.012/0.523/0.823/0.083|0.274
Embeddings

Text Output

Q o8 Fig: Hands on LLMs - Jay Alammar & Maarten Grootendorst

[

Classification

©EDB 2025 — ALL RIGHTS RESERVED.

(DEDB

Time to Rock

Search: Rock music outfits
Filter: women
Limit to top 11

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Demo Time

Rock music outfit for women

C o EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The products table

CREATE TABLE products (
id BIGINT PRIMARY KEY
, 1mg id BIGINT REFERENCES products images (1d)
, description TEXT

, gender TEXT

) ;

AN EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The products table

CREATE TABLE products (
id BIGINT PRIMARY KEY
, 1mg id BIGINT REFERENCES products images (1d)
, description TEXT
, gender TEXT

) s CREATE TABLE products embeddings (

product 1d BIGINT REFERENCES products (id)
, embedding vector (384)
) ;

AN EDB ©EDB 2025 — ALL RIGHTS RESERVED.

(:> EDB

Time to Rock

Rock music outfits

Top K

»

Semantic
search

Y

©EDB 2025 — ALL RIGHTS RESERVED.

&>

Time to Rock

Rock music outfits

Top K

-

Semantic
search

Y

©EDB 2025 — ALL RIGHTS RESERVED.

C Y EDB

Time to Rock

Rock music outfits

Top K

»

Semantic
search

Y

kl

Topk'<=K
Rock music outfits
for women

L.
»

Y

©EDB 2025 — ALL RIGHTS RESERVED.

Time to Rock

i GEDB 2025 - ALL IGHTS RESERVED

(by EDB

Time to Rock

TopK
Rock music outfits
> for women

Semantic
search

Y

©EDB 2025 — ALL RIGHTS RESERVED.

(by EDB

Time to Rock

TopK
Rock music outfits
> for women|

Semantic
search

Y

©EDB 2025 — ALL RIGHTS RESERVED.

(by EDB

Time to Rock

TopK
Rock music outfits
> for women|

Semantic
search

Y

©EDB 2025 — ALL RIGHTS RESERVED.

Why Getting Search Right Matters

Finding exactly the right product vs. irrelevant suggestions; Slack, Healthcare sector, e-commerce, game

(O EDB ©EDB 2025 — ALL RIGHTS RESERVED.

Demo

Floral Dress for the summer party

C o EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The Promise of Understanding Semantic Meaning

e Finds related concepts even without keyword overlap.
o Excellent for discovery and recommendation.

(DEDB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

The Promise of Understanding Semantic Meaning

e Finds related concepts even without keyword overlap.
e Excellent for discovery and recommendation.
e Handles synonyms and related concepts naturally.

(DEDB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

The Promise of Understanding Semantic Meaning

e Finds related concepts even without keyword overlap.

e Excellent for discovery and recommendation.

e Handles synonyms and related concepts naturally.

e Enables natural language querying and Question Answering.
e Can search across modalities (text-image, text-speech).

(DEDB

EEEEEEEEEEEEEEEEEEEEEEEEEEE

The Reality Behind The Hype

"Nearest" = "Best"
The "Black Box”
Computational Cost
Keyword Blindness

Context Ambiguity

(3 EDB ©EDB 2025 — ALL RIGHTS RESERVED.

What can we do?

Possible
Solutions

(O EDB ©EDB 2025 — ALL RIGHTS RESERVED.

What can we do?
Partial Indexes

Possible
Solutions

(D EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The products table

CREATE TABLE products (
id BIGINT PRIMARY KEY
, 1mg id BIGINT REFERENCES products images (1d)
, description TEXT
, gender TEXT

) s CREATE TABLE products embeddings (

product 1d BIGINT REFERENCES products (id)
, embedding vector (384)
) ;

AN EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The products table

CREATE TABLE products (
id BIGINT PRIMARY KEY
, 1mg id BIGINT REFERENCES products images (1d)
, description TEXT
, gender TEXT

, embedding vector (384)

AN EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The products table

CREATE TABLE products (
id BIGINT PRIMARY KEY
, 1mg id BIGINT REFERENCES products images (1d)
, description TEXT
, gender TEXT
, embedding vector (384)
) ;
CREATE INDEX ON products USING hnsw (embedding vector cosine o0ps)

WHERE gender = 'women';

AN EDB ©EDB 2025 — ALL RIGHTS RESERVED.

What can we do?
Partial Indexes

Possible
Solutions

(D EDB ©EDB 2025 — ALL RIGHTS RESERVED.

What can we do?

Partial Indexes
L+ how many?

Possible
Solutions

EEEEEEEEEEEEEEEEEEEEEEEEEEE

j~ EDB

What can we do?

Possible
Solutions

Partial Indexes
L+ how many?

Limited
#filters

Only for
= filter

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What can we do? Limited

#filters
Partial Indexes
L+ how many?
Only for
= filter
00—
Possibl .
So(;:stlio:s *» Union U
K—»

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What can we do? Limited

#filters
Partial Indexes
L+ how many?
Only for
= filter
0—»
Possibl .
So(;:stlio:s » Union U ?
K—»

The Solution: Hybrid Search - Union

* Run Full Text Search and Vector Search queries independently.
» Get two ranked lists of results.
» Combine these lists using an algorithm. Popular option: Reciprocal Rank Fusion

(l O EDB ©EDB 2025 — ALL RIGHTS RESERVED.

What can we do? Limited

#filters
Partial Indexes
L+ how many?
Only for
= filter
00—
Possibl We need
ossible .
Solutions > Union U /
K—»

The Solution: Hybrid Search - Intersect

» Leverage the best of both worlds
» Find semantically relevant items that also satisfy keyword constraints or other filters.

The Method:

Use full text search for essential keywords to get an initial set of candidates (e.g., top 100-500 results).
Then run semantic search on the candidate data for user query that fits with semantic need.

For example; “‘summer outfit for Thailand trip under €50”

Summer outfit for Thailand - requires semantic search because...
<€50 - is a filtering.

(3 EDB ©EDB 2025 — ALL RIGHTS RESERVED.

What can we do? Limited

#filters
Partial Indexes
L+ how many?
Only for
= filter
0—»
Possible We need
Solutions Union U /
K—>»

Iterative Scan

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What can we do? Limited

#filters
Partial Indexes
L+ how many?
Only for
= filter
0—»
Possible We need
Solutions Union U /
K—>»
Iterative Scan

pgvector 0.8.0

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Hybrid Search: using pgvector

‘summer outfit for Thailand trip under €50”
Indexes: HNSW & IVFFlat are Approximate Nearest Neighbor (ANN) indexes.

Standard ANN index scans (especially HNSW in pgvector) often struggle to efficiently apply WHERE clause
filters during the nearest neighbor search.

Common Issue: Retrieve Top K vector neighbours -> Then apply metadata filters.
Result: The desired k value didn't meet as a result, it may not return an output at all.

©EDB 2025 — ALL RIGHTS RESERVED.

(DEDB

Hierarchical Navigable Small Worlds

CREATE INDEX ON items
USING hnsw (embedding vector_cosine_ops)
WITH (m = 16, ef_construction = 64);

SET hnsw.ef_search = 100;

C OEDB

Hierarchical Navigable Small Worlds

S*_(’l“:_‘“"‘j
0 ¢ K
] layer 2
CREATE INDEX ON items : Wi
USING hnsw (embedding vector_cosine_ops) ' m
WITH (m = 16, ef_construction = 64); ' '
]
. o
v
o /' : S layer 1
' O
quafd*:
SET hnsw.ef_search = 100; vactor g
[}
4
@) O O
O \layer0
W me, O

C o EDB ©EDB 2025 — ALL RIGHTS RESERVED.

Inverted File Flat

CREATE INDEX ON items
USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 1000);

SET ivfflat.probes = 32

&

Group 1

‘ 3
Group 4

Group 3

@)

A query vector

O‘o\)"
0®o®
¢

\j

©EDB 2025 — ALL RIGHTS RESERVED.

|deal Scenario

-— Select top 5 similar image IDs
SELECT
img 1id,
(embedding <=> '{text embeddings}') AS score
-— Calculate similarity score
FROM
products embeddings
WHERE
gender = '{gender}' -- Filter by gender
ORDER BY
score
LIMIT 11;

Oo EDB ©EDB 2025 — ALL RIGHTS RESERVED.

The Scenario | can Use ?

-- 1. Filter products by gender
WITH filtered products AS (
SELECT img id, productdisplayname
FROM products pgconf
WHERE gender = '{selected gender}'
)
-— 2. Find top 100 similar embeddings for filtered products
SELECT
r.img id, r.score
FROM
filtered products fp
CROSS JOIN LATERAL (
SELECT img id, (embedding <=> '{text embeddings}') AS score
FROM products embeddings pgvector
ORDER BY score
LIMIT 100
) AS r
-- 3. Join and get the top 5 most similar
WHERE r.img id = fp.img id
ORDER BY r.score LIMIT 11;

©EDB 2025 — ALL RIGHTS RESERVED.

ob EDB

The Scenario | can Use ?

-- 1. Filter products by gender
WITH filtered products AS (
SELECT img id, productdisplayname
FROM products pgconf
WHERE gender = '{selected gender}'
)
-— 2. Find top 100 similar embeddings for filtered products
SELECT
r.img id, r.score
FROM
filtered products fp
CROSS JOIN LATERAL (
SELECT img id, (embedding <=> '{text embeddings}') AS score
FROM products embeddings pgvector
ORDER BY score
LIMIT 100
) AS r
-- 3. Join and get the top 5 most similar
WHERE r.img id = fp.img id
ORDER BY r.score LIMIT 11;

©EDB 2025 — ALL RIGHTS RESERVED.

ob EDB

Hybrid Search with Intersection: using pgvector

A)= EDB

jkatz or

@Palmik PostgreSQL supports through which lets you define an index like:

X ON document USING hnsw(embedding) WHERE category = ?
However, you would have to do this for every single category in the database. To look up from both indexes at the same time,
pgvector would have to add support for bitmap scans in hnsw .

That said, picking an indexing strategy may depend on the actual contents of your data. For example, if your category filter
eliminates most rows (e.g. you have a handful of vectors to compare remaining), using the index embedding may not make

sense. Or based upon your use case, you may want to perform the ANN search first and then filter out the results by category.

o2

Palmik on

Thanks Jonathan. Partial index on all possible categories is also unfortunately not feasible (for similar reasons partitioning is
not). While in our case category filter will eliminate most documents, the remaining document set is still too large for nearest-
neighbor scan without index (millions of documents).

Is there any plan to support these kind of use cases, where combining traditional and hnsw indices would lead to much better
performance?

©EDB 2025 — ALL RIGHTS RESERVED.

Hybrid Search: using pgvector v0.8.0

Iterative Index Scans

With approximate indexes, queries with filtering can return less results since filtering is applied after the index is
scanned. Starting with 0.8.0, you can enable iterative index scans, which will automatically scan more of the index
until enough results are found (or it reaches hnsw.max_scan_tuples or ivfflat.max_probes).

Iterative scans can use strict or relaxed ordering.

Strict ensures results are in the exact order by distance

SET hnsw.iterative_scan strict_order;

Relaxed allows results to be slightly out of order by distance, but provides better recall

SET hnsw.iterative_scan = relaxed_order;

T ivfflat.iterative_scan = relaxed_order;

With relaxed ordering, you can use a to get strict ordering

WITH relaxed_results AS MATERIALIZED (
SELECT id, embedding <—> '[1,2,3]' distance items WHERE category_id
) SELECT * FROM relaxed_results | R BY distance;

For queries that filter by distance, use a materialized CTE and place the distance filter outside of it for best
performance (due to the of the Postgres executor)

WITH nearest_results AS MATERIALIZED (
ECT id, embedding <-> '[1,2,3]' AS distance items (BY distance L
T * FROM nearest_results | distance < 5 BY distance;

oo L ©EDB 2025 — ALL RIGHTS RESERVED.

VectorChord Vchord+Vchord_BM25

» VectorChord-BM25 is a PostgreSQL extension for keyword search. It not only implements BM25
ranking but also includes a tokenizer and a Block-WeakAnd index to improve speed.

» Semantic Search is utilizing RabitQ algorithm.
RabitQ is a quantization algorithm for high-dimensional spaces, designed to improve the storage and retrieval
efficiency of high-dimensional data, such as embedded vectors.

(l D EDB ©EDB 2025 — ALL RIGHTS RESERVED.

lterative Scan

EEEEEEEEEEEEEEEEEEEEEEEEEEE

C ‘\EDB

lterative Scan

Rock music outfits

TopK

»

Semantic
search

4

Topk'<=K
Rock music outfits
> for women

Y

©EDB 2025 — ALL RIGHTS RESERVED.

C p‘EDB

lterative Scan

1st Iteration

2nd Iteration

Rock music outfits

TopK

»

Semantic
search

) 4

Y

Topk'<=K
Rock music outfits
0 —> for women

k'—>
k' —»
K

©EDB 2025 — ALL RIGHTS RESERVED.

&=

lterative Scan

1st Iteration

2nd Iteration

3rd Iteration

Rock music outfits

TopK

»

Semantic
search

A 4

Y

Y

Topk'<=K
Rock music outfits
0 —»for women

Y Y

Y

©EDB 2025 — ALL RIGHTS RESERVED.

(DEDB

Closing words

 Full text is not enough

« Vector search is not enough

« Existing tools only solves part of the problem or too expensive
(and complicated)

* [terative scans looks promising yet not cost-efficient

EEEEEEEEEEEEEEEEEEEEEEEEEEE

References

Hands on LLMs - Jay Alammar & Maarten Grootendorst
https://qithub.com/pgvector/pgvector/issues/259
https://github.com/pgvector/pgvector?tab=readme-ov-file#iterative-index-scans
https://qithub.com/pavector/pgvector/issues/301
https://blog.vectorchord.ai/hybrid-search-with-postgres-native-bm25-and-vectorchord

apLON=

©EDB 2025 — ALL RIGHTS RESERVED.

COEDB

https://github.com/pgvector/pgvector/issues/259
https://github.com/pgvector/pgvector?tab=readme-ov-file#iterative-index-scans
https://github.com/pgvector/pgvector/issues/301
https://blog.vectorchord.ai/hybrid-search-with-postgres-native-bm25-and-vectorchord

J EDB

Any Questions?

Bilge Ince
@bilge.bsky.social
bilge.ince@enterprisedb.com
Boriss Mejias
@tchorix.bsky.social
boriss.mejias@enterprisedb.com

EEEEEEEEEEEEEEEEEEEEEEEEEEE

